Vaincre « la » bronchiolite : Pour aujourd'hui ou pour demain ? Voire jamais ?

Jacques Brouard
Université de Caen Normandie
UMR 1311 Dynamicure
FHU RESPIRE

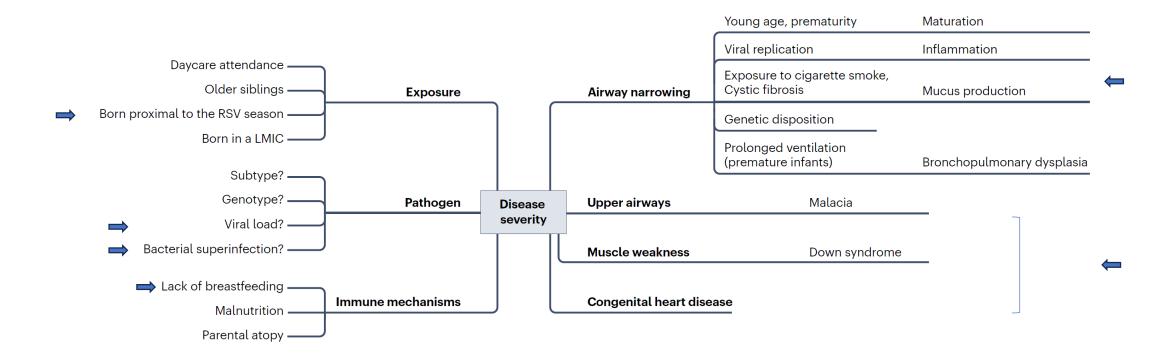
Liens / Conflits d'intérêt

Intérêts financiers néant Liens durables ou permanents néant

Interventions ponctuelles

ALK: réunion experts, orateur, congrès Astra-Zeneca: réunion experts, orateur GSK: réunion experts, orateur, congrès MSD: réunion experts, orateur, congrès Novartis: réunion experts, orateur, congrès

Sanofi: orateur


Intérêts indirects CRC Ped (études AC VRS Association ESTHER

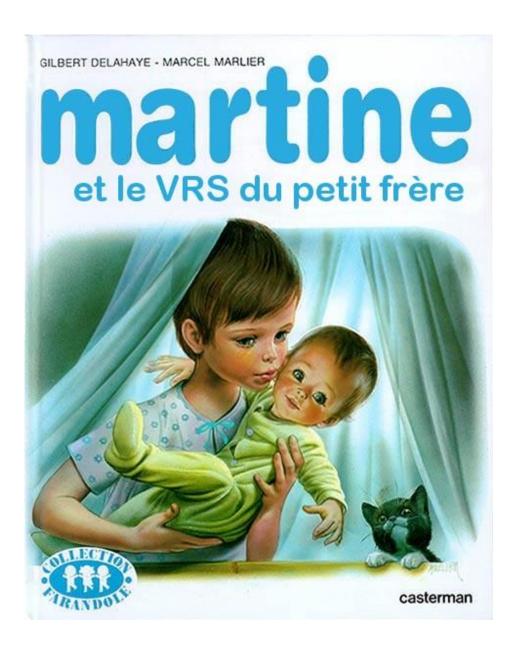

Fardeau du VRS

Image de l'iceberg

Facteurs associés à la sévérité atteinte VRS chez le nourrisson

BRITISH MEDICAL JOURNAL

LONDON SATURDAY JANUARY 25 1941

ACUTE BRONCHIOLITIS IN CHILDREN

BY

DOUGLAS HUBBLE, M.D.

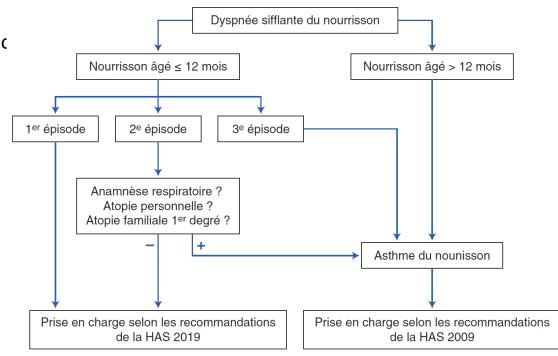
Physician to the Derbyshire Hospital for Sick Children

AND

G. R. OSBORN, M.B., B.S.Melb.

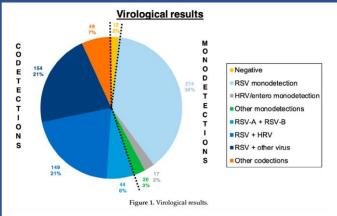
Pathologist to the Derbyshire Royal Infirmary and Derbyshire Hospital for Sick Children

Tout y est décrit (disponible en ligne!)

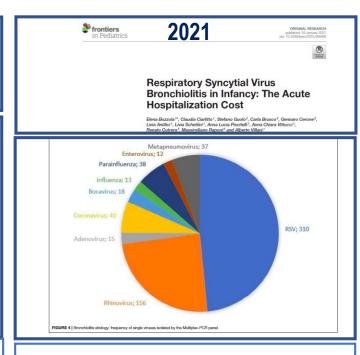

la sémiologie, le nursing, l'hydratation, l'oxygène

Particularité : un peu d'alcool pour soutenir le tonus

(les Normands et les Bretons étaient-ils en avance ?)


Définition clinique en France 2019 = 12 mois mais épidémiologie Santé Publique France 2 ans...

- > Pas ou peu fébrile habituellement
- Atteinte des voies respiratoires : rhinc pharyngite 48-72h
- Puis toux, augmentation FR
- Signes de lutte respiratoire
- Dyspnée avec polypnée et frein expiratoire, distension thoracique
- Auscultation:
 - crépitant puis sibilants
 - +/- wheezing audible
 - Silencieuse dans les
 - formes graves



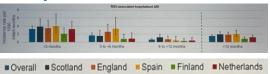
Bronchiolite: ~ 100% virus par détection moléculaire leader VRS mais pas le seul virus et co-détection....

- > 6 sem.< 1 an et N = 719 échantillons
- PCR multiplex détectant 18 virus
- Détection virale dans 98% des pvts
- VRS: 88 % (633/719), avec VRS A 52% et VRS B34% et 12 codétections VRS A et B
- Total: 55% de co-détection virale: RSV/RhV 30%

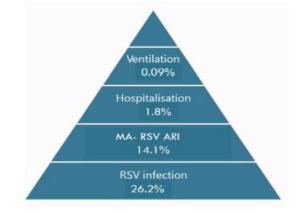

- >1 mois < 1 an. N = 531 échantillons
- PCR multiplex détectant 16 virus
- RSV = 58 % (310/531) dont 17% de codétections
- Total de 23,7% de co-détection virale

Fardeau VRS Pediatrique

Monde: 95% pays à revenus faibles et


Collins et al J Virol 2008; Navarro Alonso et al Emerg Themes Epidemiol 2021; Hennus et al PLoS One 2013; Li Y et al Lancet

- > <5 ans 33 millions RSV LRTI
- > 100000 décès à 97% LMIC
- > 45% des décès ≤ 6 mois
- > 3,6 millions RSV LRTI hospitalisations



Europe: RESCEU Birth Cohort

Wildenbeest JG et al. Lancet Respir Med 2023

- ≤ 12 mois 2017-2020
- Incidence des hospitalisations liées VRS varie entre pays de 1,1% à 2,5%
- ~15% enfants d'une cohorte "populationnelle" nécessiteront PEC médicalisée LRTI VRS
- 37,4% des hospitalisations pour IVRI sont positives VRS
- 57.9% survenant chez nourrissons < 3 mois

Fardeau hospitalier bronchiolites/VRS dans pays à haut niveau de ressources France

Che et al. Epidemiol Infect 2010;138:573-5

- ■Chez le moins de 1 an : InVS et CépiDC (2009)
 - Hospitalisation: 18 / 1000 (constante augmentation)
 - 2 à 3% des moins de 12 mois hospitalisés (surtout <3-6M)
 - Décès : 10 par an

Demont et al. BMC Infectious Diseases (2021) 21:730 https://doi.org/10.1186/s12879-021-06399-8

BMC Infectious Diseases

RESEARCH

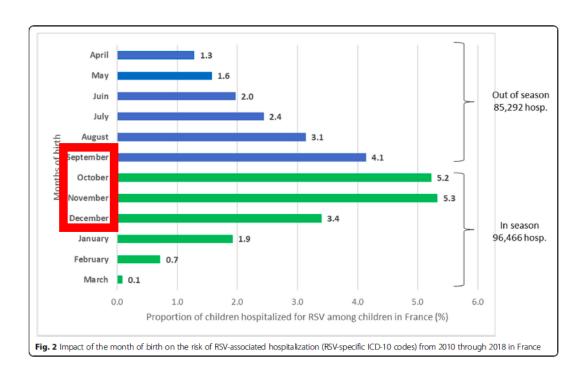
Open Access

Economic and disease burden of RSVassociated hospitalizations in young children in France, from 2010 through 2018

C. Demont^{1*}, N. Petrica², I. Bardoulat², S. Duret², L. Watier³, A. Chosidow⁴, M. Lorrot⁴, A. Kieffer¹ and M. Lemaitre²

Etude BRONCHIOPIC-H

Etude descriptive : analyse rétrospective à partir des données des hospitalisations liées au VRS chez les enfants < 5 ans de 2010 à 2018


Sources : PMSI et INSEE. 5 tranches d'âge de 0 à 59 mois. 4 tranches âge gestationnel

407 825 hospitalisations. Saisons VRS de novembre à mars (avant COVID...)

Impact du mois de naissance : FR septembre/décembre Mais aussi ~50/50 saison VRS et hors saison!

Demont C. et al., 2021

Transmission VRS : R° ~ 4,5 (1,7 à 8,2 selon les études)

Fardeau hospitalier du VRS dans pays à haut niveau de ressources

Facteurs de risques de sévérité de l'infection à VRS :

- 1. Prématurité
- 2. Maladie pulmonaire chronique
- 3. Cardiopathies congénitales
- 4. Déficit neuro-musculaire
- 5. Déficit immunitaire
- 6. Syndrome de Down

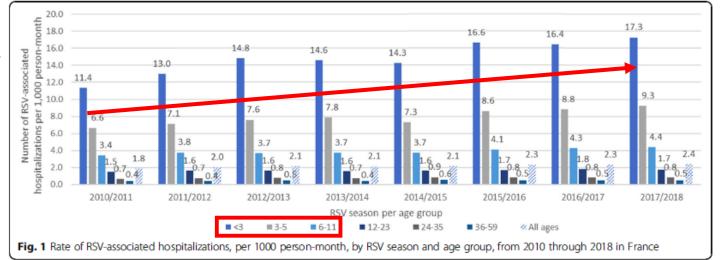
Cause principale d'hospitalisation chez les enfants < 1 an

aux US

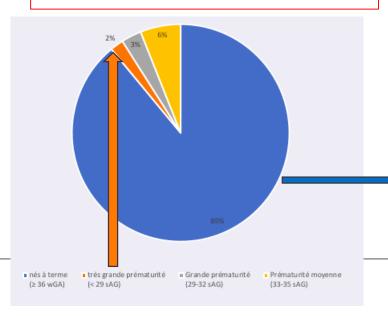
CDC; National center for Health Statistcs; Shi T et al., 2015; Arriola CS et al. 2019

Classique

mais fardeau des


enfants sains?

suite \rightarrow



Demont C. et al., BMC Infect Dis 2021

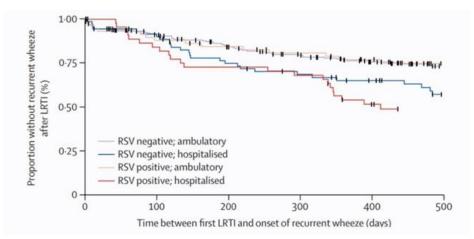
89 % : enfants nés à terme

87 % : enfants en bonne santé

17015 hospitalisations <3mois / saison VRS 35228 hospitalisations <1 an / saison VRS

Les maladies associées au VRS responsables de **22 à 28 % de toutes les hospitalisations** saison VRS chez < 1 an

Nécessité de changer de paradigme de prévention

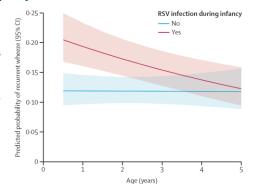

Fardeau VRS pas seulement en aigu!

Afrique du Sud cohorte néonatale

N = 1143

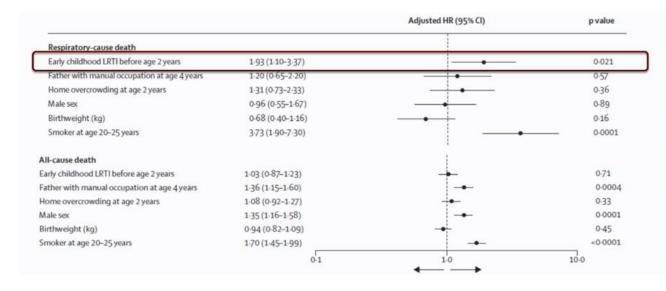
Zar et al Lancet Glob Health 2020

Suivi à 24 mois hospitalisé vs ambulatoire, VRS + versus VRS - Récurrences sifflantes ? Atteinte FRespiratoire



Si IVRI surtout si VRS+ = X 3 récurrences et atteinte Fonction Respiritoire

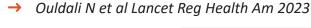
USA cohorte néonatale populationnelle :

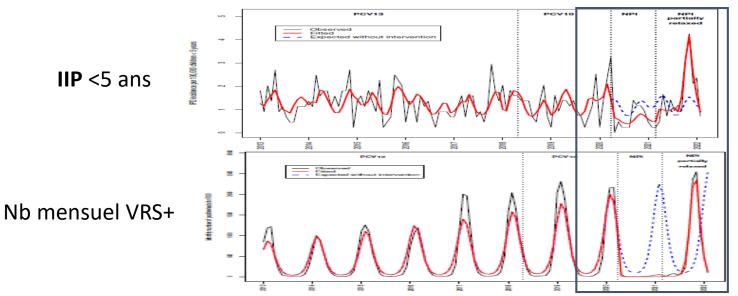

Rosas-Salazar Cetral Lancet 2023

- Méthodologie pour causalité et limiter biais facteur hôte : PCR si Symp ET sérologie 1 an
- Ne pas être infecté par VRS < 1 an = RR 0,74 (p 0,01) asthme A5 versus VRS +
- Prévenir VRS éviterait 15% asthme...

Cohort study used Medical Research Council National Survey of Health and Development

Cohorte recrutée dès la naissance en Mars 1946 Angleterre, Ecosse, Gales Evaluation du risque ajusté (socio-éco, terme, PN, sexe, tabac...) de Décès adulte de cause respiratoire



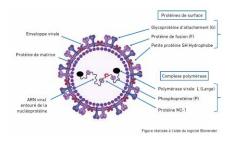

IVRI avant 2 ans (majorité VRS...) associée à un risque presque deux fois plus élevé de décès prématuré à l'âge adulte par maladie respiratoire et représentait un cinquième de ces décès

Allinson et al Lancet 2023

Dogme : l'intrication bactérienne au cours des infections respiratoires virales est rare (C Hall)

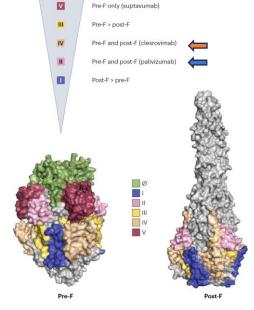
NON! = Surveillance des IIP province de Québec, Canada, de janvier 2013 à janvier 2022

	Period 3	
RSV	77.2% [33.1; 100]	
Influenza	1.5% [-29.3; 32.2]	
Parainfluenza 1	2.5% [-1.1; 6.2]	
Parainfluenza 2	5.5% [-28.1; +39.2]	
Parainfluenza 3	2.0% [-3.3; 7.3]	
Parainfluenza 4	-4.1% [-12.1; 3.9]	
Adenovirus	6.9% [-30.3; +44.1]	
Human metapneumovirus	11.5% [-9.2; 32.2]	
Common coronaviruses (non-SARS-CoV-2)	-8.3 [-14.2; -2.4]	
Table 3: Fraction of IPD increase in children <5 years in 2021–22 period attributable to respiratory viruses.		


- Fraction des IIP attribuable à la dynamique du VRS chez les enfants était de 77 % (IC à 95 % [33-100])

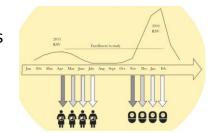
Coût humain et financier +++

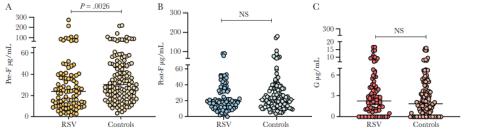
- Pas de traitement une fois l'atteinte respiratoire VRS débutée (cf HAS 2019...)
- Une seule solution : la PREVENTION !
 - NPI très efficace mais est-ce quelqu'un sans symptôme a un masque dans la salle ?
 - Immunoprophylaxie
 - Vaccinologie


Structure et Immunologie VRS

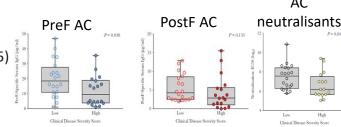
Progrès des connaissances virologiques

- ➤ Virus enveloppé ARN, 10 gènes codant chacun pour un polypeptide dont 3 de surface transmembranaires (F, G, SH)
- ➤ La glycoprotéine G facilite l'attachement à la membrane cellulaire, la protéine F permet l'attachement et la fusion avec la cellule
- Deux sous-groupes RSV antigéniques phylogénétiquement distincts existent (A, B)
- Grande variabilité de la séquence nucléotidique du gène G, le gène F est plus stable
- Importance de la structure
 tridimensionnelle de F: très
 différente entre pré-fusionnelle et postfusionnelle, or cible des AC neutralisants #

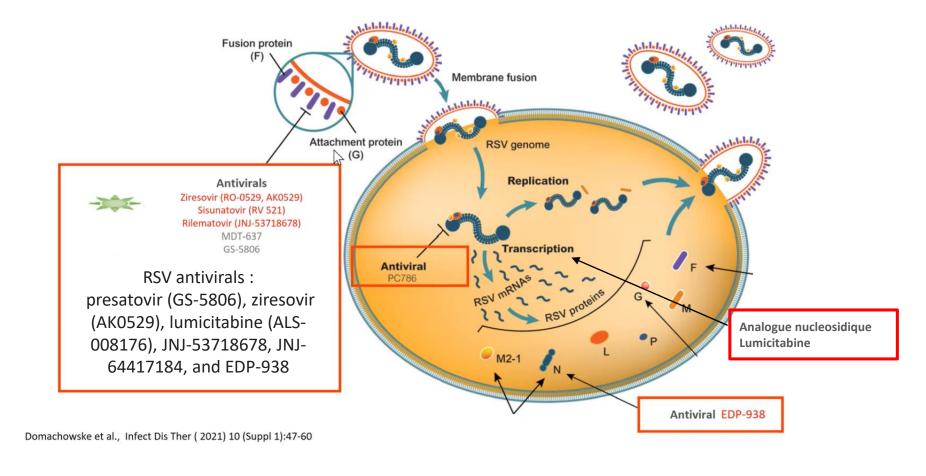

Langedijk AC, Bont LJ. Nature Reviews Microbiology 2023



Pre-F only (nirsevimab, RSMO1)


Mise en évidence du rôle des AC PreF

[IgG] dirigés contre preF, postF et G de sérums à S9-S12 des grossesses de 94 mères de nourrissons hospitalisés VRS vs 130 mères dont les enfants n'ont pas été hospitalisés

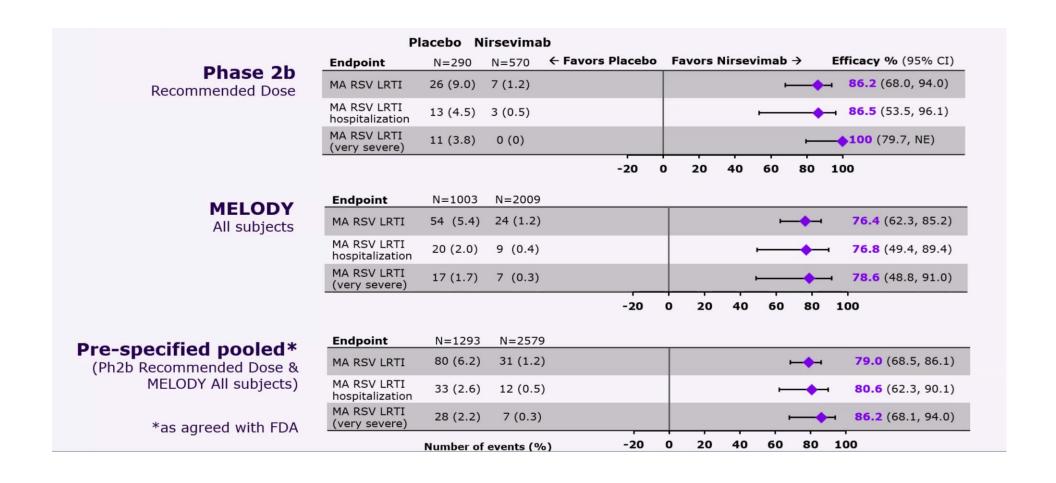

Cohorte de nourrissons en bonne santé hospitalisés (n = 45) ou évalués en consultation externe (n = 20) pour VRS, vs témoins (n = 18)

- ➤ [AC PreF] ≥3 fois vs [ACpostF] et >30 fois [AC G]lors infection aiguë VRS
- > AC pré-F présentaient la plus grande activité neutralisante (55% à 100%)
- ➤ ¬[AC PreF] // ¬ gravité clinique, pas de lien avec [ACpostF]

→ Koivisto et al J Infect Dis 2022; Capella et al J Infect Dis 2017

Cycle viral : machinerie réplicative Molécules antivirales Phase 2 et 3

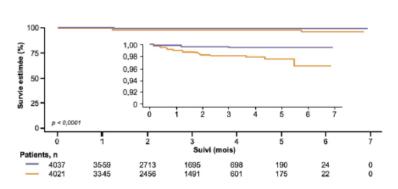
Aucune molécule antivirale n'a franchi phase 2b chez l'enfant : EI+++


Quels sont les pistes « immunitaires »

- Par voie maternelle :
- Immunité préexistante (qui a manqué durant confinement...)
- Vaccination maternelle et passage Ig transplacentaire
 - Vaccins à sous-unités : MATISSE phase III : Pfizer vaccin bivalent 2 protéines preF recombinantes à 120μg (A et B), 7400 femmes enceintes fin 2^{ième} ou 3^{ième} trimestre = efficacité prévention formes sévères atteintes VRI par VRS 82% au cours des 3 premiers mois de vie des nourrissons (69% à M6) = demande FDA fin 2022
 - Vaccins à base de particules : multiples copies d'un antigène Novavax Phase III chez femme enceinte : efficacité de 39 % pour réduire les IVRI induites par le VRS dans les 90 premiers jours de vie, et une efficacité de 44 % dans la réduction de l'hospitalisation
- Chez l'enfant < 6 mois : AC monoclonal palivizumab, AC one-shoot phase 3b</p>
- Chez l'enfant > 6 mois :
 - AC one-shoot ?
 - Vaccination virus atténué/chimérique phase 2, ARN ?

Quels AC sont/seront disponibles?

- Palivizumab AMM/remboursement depuis 1999 « mAb traditionnel » injection mensuelle péri-épidémique
- Motavizumab : Phase II/III, 2010 échec FDA, retrait
- Nirsevimab : « mAb ½ vie étendue » 31/10/2022 EMA
 - Phase II nourrisson≥ 35 semaines MELODY
 - Phase IIb 29-34 semaines
 - Phase II/III safety et pharmacocinétique chez nourrissons éligibles Palivizumab MEDLEY
 - Phase III Harmonie
- Clesrovimab « mAb ½ vie étendue »
 - Phase II/III (MK 1654 004 et 007)
 - → https://www.ema.europa.eu/en/medicines/human/EPAR/nirsevimab


Nirsevimab Etudes pivotales publiées

Vers un changement de paradigme?

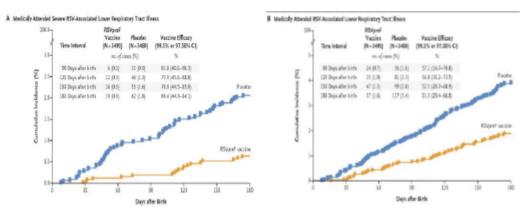
— Nirsevimab

Pas d'intervention

Phase III >29SA hors indication palivizumab randomisée 1/1 nirsevimab vs « rien », ouvert, Allemagne + France + Grande Bretagne :

- > 8000 enfants lors saison hivernale 2022-2023, 85%
 ≥37SA
- 83,21 % de réduction des hospitalisations pour bronchiolite à VRS (IC_{95} : 67,77-92,04 %), p < 0,001
- 75,71 % IVRI-VRS très sévère
- 58,04 % de réduction des hospitalisations pour l'ensemble des infections respiratoires pendant la saison du VRS ($IC_{95} = 39,69-71,19$), p < 0,001

[→] Drysdal et al. 2023 – ESPID23


[→] Nirsevimab significantly protected infants against RSV disease in Phase III MELODY trial (.com)

[→] press-release.pdf (globenewswire.com)

Vaccination VRS chez la femme enceinte

Objectif de cette vaccination : immunoprophylaxie du nourrisson +++

MATISSE

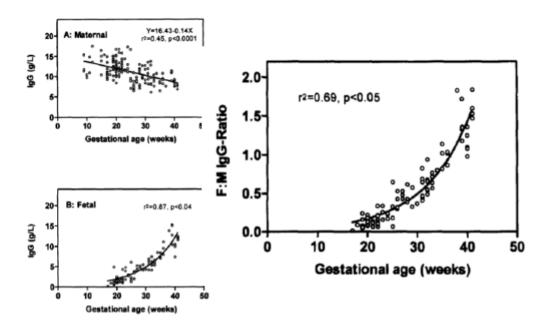
- Phase III, DA, 18 pays, femmes enceintes S24-S36
- 1 injection de bivalent RSVPreF 60/60 μg vs placebo
- Analyse intermédiaire :

3570 vaccinés, 3558 témoins

☐ Maladie grave VRI-VRS médicalement assistée

J90 efficacité vaccin : 81,8 % (IC 40,6 à 96,3)

J150 efficacité vaccin : 70,9 % (IC 44,5 à 85,9)


■ Maladie VRI-VRS médicalement assistée

J90 efficacité vaccin : 57,1 % (IC 14,7 à 79,8)

J150 efficacité vaccin : 52,5 % (IC28,7 à 68,9)

- Incidence effets indésirables 1 mois suivant l'injection ou 1 mois suivant la naissance similaire dans le groupe vacciné (13,8 % des femmes et 37,1 % des nourrissons) et le groupe placebo (13,1 % et 34,5 %, respectivement)
 - → Kampmann et al N Engl J Med 2023

Evolution of Maternofetal Transport of Immunoglobulins During Human Pregnancy

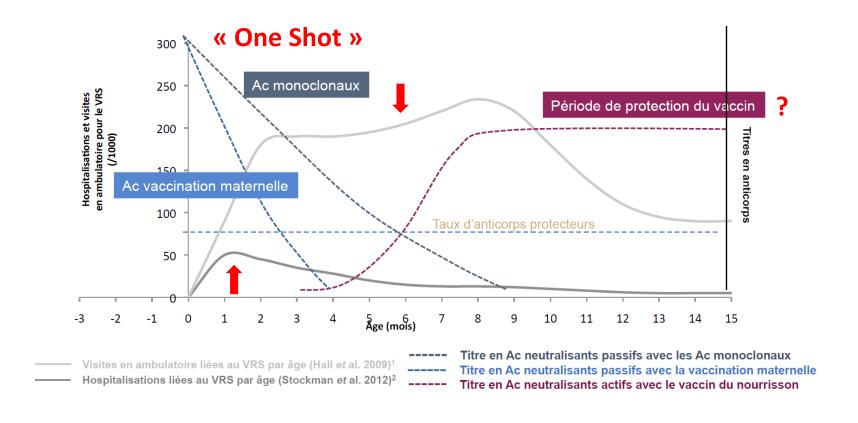
- Passage transplacentaire AC de la mère à l'enfant augmente durant la grossesse
- Au 3^{ième} trimestre mise en place transport actif AC

→ Malek A et al Am J Reprod Immunol 1996

Réflexions vaccin mère versus immunoprophylaxie passive nourrisson BS choix ?

Faut-il choisir une seule stratégie?

- → Immunoprophylaxie nourrisson: protection 6 mois-9 mois?, qq soit contexte nourrisson ou maternel, timing prévoir chez ceux qui auront < 8 mois (US) au début épidémie et réalisation à faire lors sortie mater durant épidémie VRS
- → Vaccination mère : protection plus courte ~3-4 mois ?, timing grossesse / épidémie, contexte maternel (jumeau ? Prématurité ? Santé mère ?...), couverture vaccinale ??
- → Vaccination nourrisson par IN virus atténué ou recombinant : réponse immunitaire trop tardive car ne couvre pas <6mois, plusieurs doses à intégrer dans calendrier chargé
- → Vaccination enfant > 2 ans ? ARN par exemple (vers plusieurs virus)


Peut-on comparer?

Selon chiffres issus publications MATISSE et MELODY

Variable	Si Vaccin grossesse	Si Nirsevimab
J150 IVRI-VRS sévère	RRR ~70%	RRR ~85%
J150 IVRI-VRS	RRR ~50%	RRR ~80%
Hospitalisation	RRR ~60%	RRR ~80%
NSN évitant 1 hospitalisation	ND	53

Prudence car pas tout à fait les mêmes conditions de réalisation, ni d'évaluation des indicateurs...

Perspectives anti VRS : vers un changement de paradigme +++ Ciblage la population générale

Les vaccins c'est pour aujourd'hui ou pour demain?

Enfants
#
Séniors

RSV Vaccine and mAb Snapshot TARGET INDICATION P = PEDIATRIC M = MATERNAL E = ELDERLY MARKET ► PHASE 2 ► PHASE 1 ► PHASE 3 Meissa P Sanofi, P Codagenix, P Blue Lake Intravacc Vaccines LID/NIAID/NIH LID/NIAID/NIH PIV5/RSV RSV-AG LIVE-RSV RSV RSV ATTENUATED/ SIIPL, P St. Jude Hospital Pontificia P CHIMERIC Universidad Catolica de Chile BCG/RSV SeV/RSV NIH/ E M Advaccine P E Daiichi E Icosavax Immunovaccine, Pfizer Pfizer GlaxoSmithKline Sankyo NIAID/VRC Biotechnology PROTEIN-BASED RSV/hMPV VLP **RSV F Protein** RSV F Protein Protein? RSV F Protein RSV SH Protein RSV G Protein RSV F Protein PARTICLE SUBUNIT Virometix VLP MP NUCLEIC Moderna Sanofi Moderna ACID RNA RNA RNA Oisanssen Properties Janssen P Bavarian E RECOMBINANT Pharmaceutical Nordic **VECTORS** MVA Adenovirus Trinomab P Astra Merck Astra Zeneca, IMMUNO-Gates MRI Biotechnology Zeneca Sanofi Anti-F mAb **PROPHYLAXIS** Anti-F mAb Anti-F mAb Palivizumab Nirsevimab

anticorps monoclonaux

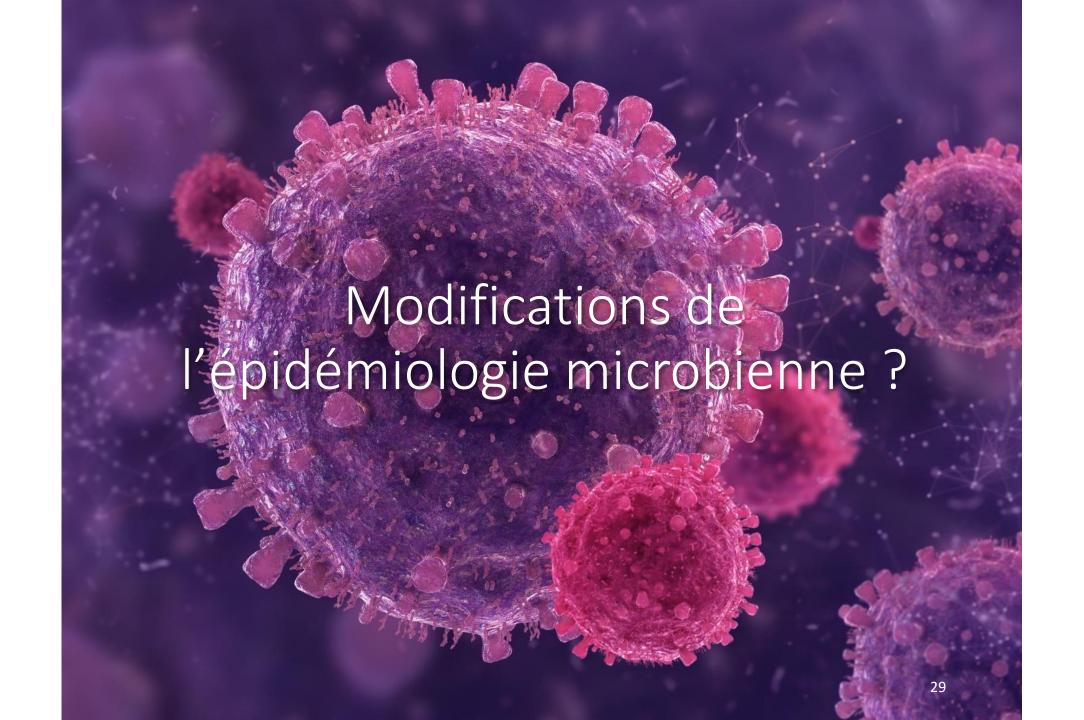
vaccins

UPDATED: May 4, 2023

Indicates Change

https://www.path.org/resources/rsv-vaccine-and-mab-snapshot/

PATH

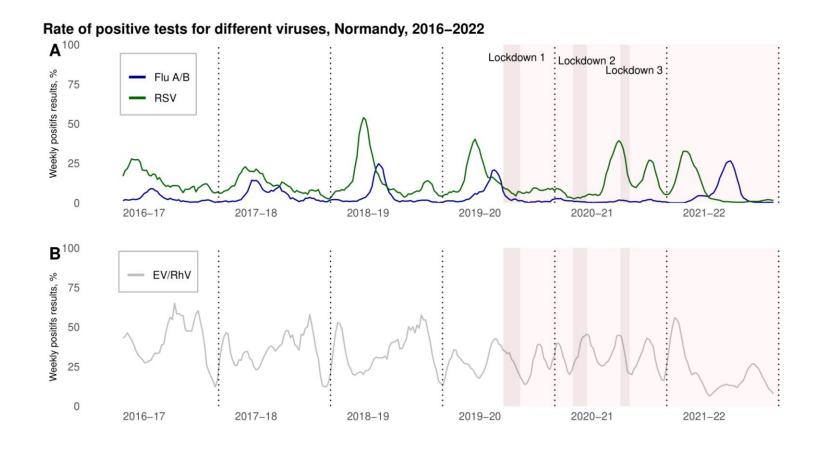


Vaccins anti-VRS pédiatriques ?

- Début catastrophique.... 1960 1er vaccin virus inactivés par le formol : 80 % des enfants qui l'avaient reçu ont été hospitalisés lors de l'infection naturelle par le VRS et 2 d'entre eux sont décédés
- Phénomène probablement consécutif à une réponse immunopathologique non adaptée et intense avec afflux local de cellules T cytotoxiques (par ailleurs 100% afro-american...TAS ?)
- Deux axes de développement se sont poursuivis, l'un par des vaccins vivants atténués, l'autre par des vaccins sous-unitaires
- Les virus atténués par modification génétique ciblée doivent trouver le bon compromis entre immunogénicité et innocuité

Vaccins anti-VRS pédiatriques ?

- Une étude a comparé 2 vaccins candidats (Cunningham CK et al. J Infect Dis 2022;226:2069-78)
 - VRS/ΔNS2/Δ1313/I1314L, atténués par une délétion du gène NS2 et une mutation de sensibilité à la température dans le gène de la polymérase
 - RSV/276, atténué par la suppression du gène M2-2
- Les 2 vaccins avaient un excellent potentiel d'infectiosité et étaient bien tolérés, étaient immunogènes et induisaient de fortes réponses anamnestiques
- Mais pas protection pour les 6 à 9 premiers mois période cible fardeau VRS pédiatrique...

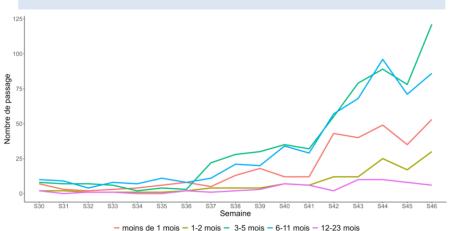


Dina J, Moisan A, Thibon P, Creveuil C, Adnet J, Vabret A, Brouard J, Plantier JC.

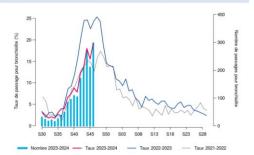
Characteristics of respiratory viruses' circulation through a six-year period (2016-2022) in a pediatric population in

Normandy, France, and the impact of COVID-19 pandemic.

Microbiol Spectr. 2023 Oct 26:e0186723.

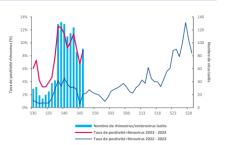

Interprétation de la situation actuelle ?

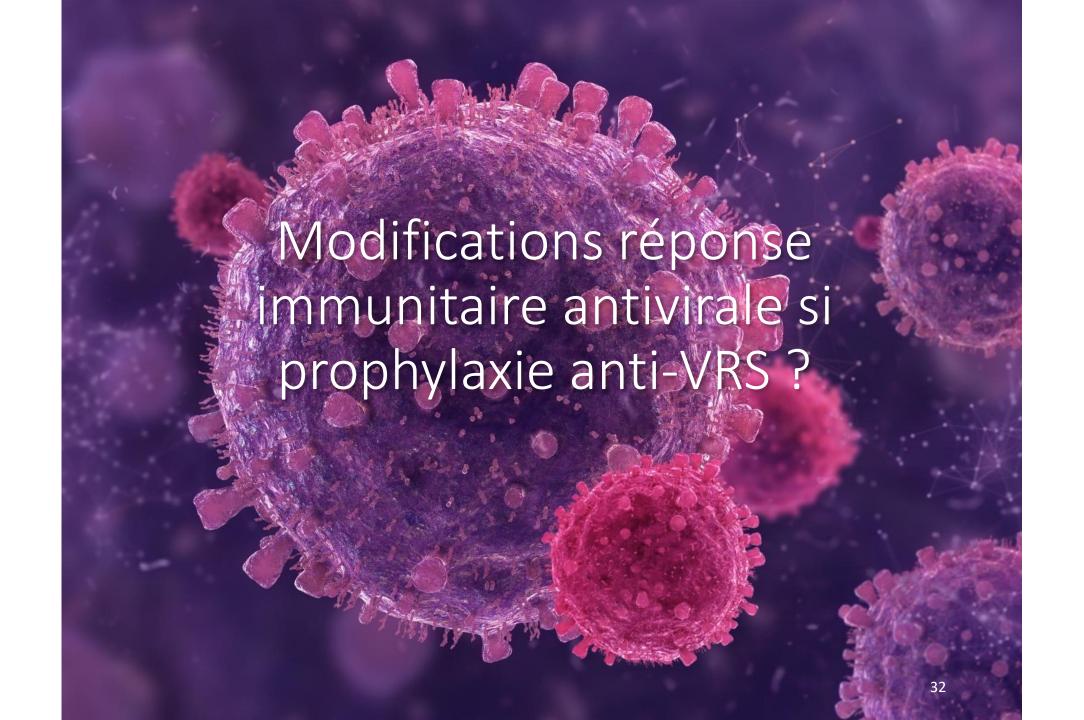
Analyse synthétique des indicateurs de surveillance épidémiologique en Normandie


Pour la semaine 46-2023 (du 13 au 19 novembre)

Évolution hebdomadaire du nombre d'actes pour bronchiolite par classe d'âge chez les moins de 2 ans en Normandie, Oscour®

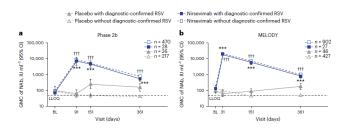


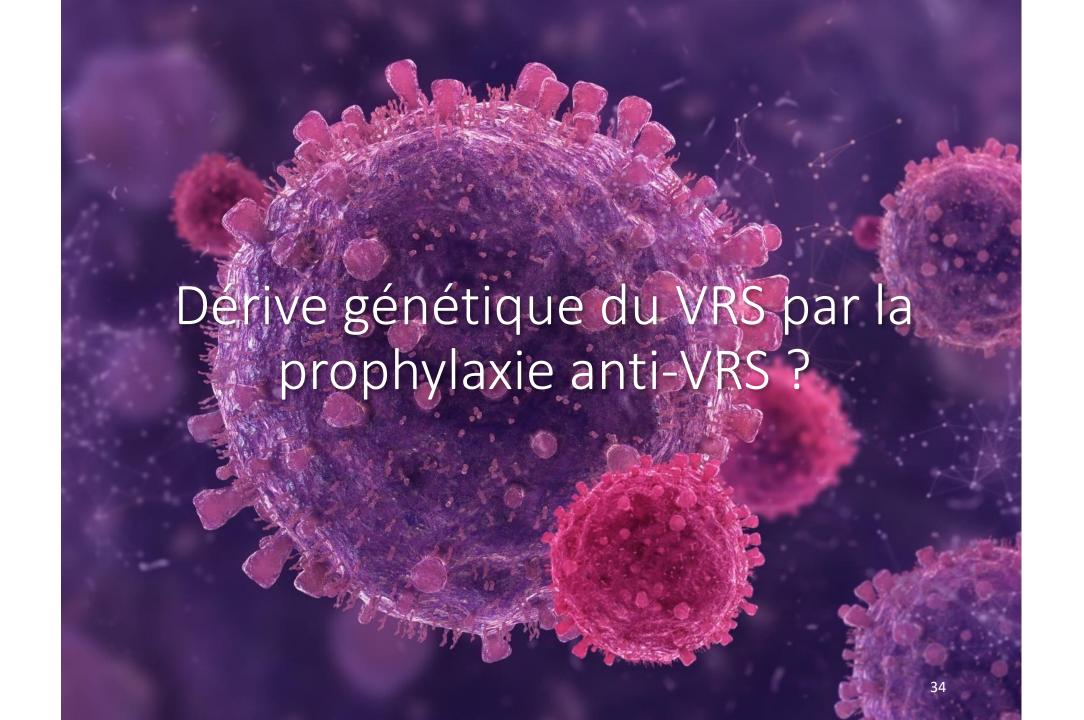

Évolution hebdomadaire du nombre de passages (axe droit) et proportion d'activité (axe gauche) pour bronchiolite chez les moins de 2 ans en Normandie, Oscour®, 2021-2023.



Évolution hebdomadaire du nombre de VRS (axe droit) et de la proportion de prélèvements positifs pour le VRS (axe gauche), Laboratoires de virologie des CHU de Caen et Rouen 2022-2023

Évolution hebdomadaire du nombre de rhinovirus/entérovirus (axe droit) et de la proportion de prélèvements positifs pour les rhinovirus/entérovirus (axe gauche), Laboratoires de virologie des CHU de Caen et de Rouen, 2022-2023.





Wilkins D et al.

Durability of neutralizing RSV antibodies following nirsevimab administration and elicitation of the natural immune response to RSV infection in infants Nature Medicine 2023;29:1172–1179

- Phase 2b and phase 3 MELODY trials
- N = 2.143
- Preterm infants had lower baseline RSV antibody levels than full-term infants
- Similar seroresponse rates to the postfusion form of RSV F protein in nirsevimab recipients (68–69%) compared with placebo recipients (63–70%; not statistically significant) suggest that while nirsevimab protects from RSV disease, it still allows an active immune response
- In summary, nirsevimab provided sustained, high levels of NAb throughout an infant's first RSV season and prevented RSV disease while allowing the development of an immune response to RSV.

Nécessité mise en place d'un suivi phylogénétique

- > Zhu Q et al. J Infect Dis 2011; 203: 674–82 : 5% enfants hospitalisés lors épidémie VRS ayant bénéficié prophylaxie palivizumab avient mutation resistance. Après 25 ans d'utilisation cela reste rare...exception ?
- Simoes EAF et al. Clin Infect Dis 2021; 73: e4400–e8: large échec du Suptavumab pour prévention VRS en raison apparition 2 substitutions AA de F du VRSB.
- > Zhu Q et al. J Infect Dis 2018; 218: 572–80 : détection de polymorphismes au sein du site récepteur conduisant à la réduction de la capacité neutralisante in vitro du nirsevimab, conséquences cliniques ?

Conclusion

- > Le VRS n'est pas « que » la bronchiolite
- > La bronchiolite n'est pas « que » le VRS
- > Le VRS comme tous les virus ARN dérive génétiquement constamment : risque d'échappement ?
- Quelles stratégies à adopter :

AC monoclonaux pour tous ? Coût ? Autres pays... Quid A2 A3 si comorbidités

Apport vaccination maternelle? Adhésion... Efficacité si grossesse à terme...

Combinaison avec futur vaccin pédiatrique ? Pas avant l'âge de 6 mois a priori

NB Protection des séniors ? Déjà 2 vaccins disponibles...vaccins ARN...

Video mode d'action Nirsevimab Youtube

• https://players.brightcove.net/5186843675001/B1tFwN8TZ_default/index.html?videoId=6335487179112